3.6.70 \(\int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [570]

3.6.70.1 Optimal result
3.6.70.2 Mathematica [A] (warning: unable to verify)
3.6.70.3 Rubi [A] (verified)
3.6.70.4 Maple [B] (warning: unable to verify)
3.6.70.5 Fricas [F]
3.6.70.6 Sympy [F]
3.6.70.7 Maxima [F(-1)]
3.6.70.8 Giac [F]
3.6.70.9 Mupad [F(-1)]

3.6.70.1 Optimal result

Integrand size = 23, antiderivative size = 427 \[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {8 a \left (4 a^4-7 a^2 b^2+2 b^4\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^5 (a+b)^{3/2} d}+\frac {2 \left (16 a^4+12 a^3 b-16 a^2 b^2-9 a b^3-b^4\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^4 (a+b)^{3/2} d}-\frac {2 a^2 \sec ^2(c+d x) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (2 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^3 \left (a^2-b^2\right ) d} \]

output
8/3*a*(4*a^4-7*a^2*b^2+2*b^4)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/ 
(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec 
(d*x+c))/(a-b))^(1/2)/(a-b)/b^5/(a+b)^(3/2)/d+2/3*(16*a^4+12*a^3*b-16*a^2* 
b^2-9*a*b^3-b^4)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),( 
(a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b 
))^(1/2)/(a-b)/b^4/(a+b)^(3/2)/d-2/3*a^2*sec(d*x+c)^2*tan(d*x+c)/b/(a^2-b^ 
2)/d/(a+b*sec(d*x+c))^(3/2)+4/3*a^3*(3*a^2-5*b^2)*tan(d*x+c)/b^3/(a^2-b^2) 
^2/d/(a+b*sec(d*x+c))^(1/2)+2/3*(2*a^2-b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x 
+c)/b^3/(a^2-b^2)/d
 
3.6.70.2 Mathematica [A] (warning: unable to verify)

Time = 13.95 (sec) , antiderivative size = 578, normalized size of antiderivative = 1.35 \[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {4 (b+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (4 a \left (4 a^5+4 a^4 b-7 a^3 b^2-7 a^2 b^3+2 a b^4+2 b^5\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b \left (-16 a^5-4 a^4 b+28 a^3 b^2+7 a^2 b^3-8 a b^4+b^5\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+2 a \left (4 a^4-7 a^2 b^2+2 b^4\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^4 \left (a^2-b^2\right )^2 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \sec (c+d x))^{5/2}}+\frac {(b+a \cos (c+d x))^3 \sec ^3(c+d x) \left (-\frac {8 a \left (4 a^4-7 a^2 b^2+2 b^4\right ) \sin (c+d x)}{3 b^4 \left (-a^2+b^2\right )^2}-\frac {2 a^3 \sin (c+d x)}{3 b^2 \left (-a^2+b^2\right ) (b+a \cos (c+d x))^2}-\frac {2 \left (-7 a^5 \sin (c+d x)+11 a^3 b^2 \sin (c+d x)\right )}{3 b^3 \left (-a^2+b^2\right )^2 (b+a \cos (c+d x))}+\frac {2 \tan (c+d x)}{3 b^3}\right )}{d (a+b \sec (c+d x))^{5/2}} \]

input
Integrate[Sec[c + d*x]^5/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(4*(b + a*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c 
 + d*x]]*(4*a*(4*a^5 + 4*a^4*b - 7*a^3*b^2 - 7*a^2*b^3 + 2*a*b^4 + 2*b^5)* 
Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*( 
1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 
 b*(-16*a^5 - 4*a^4*b + 28*a^3*b^2 + 7*a^2*b^3 - 8*a*b^4 + b^5)*Sqrt[Cos[c 
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c 
+ d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*a*(4*a^ 
4 - 7*a^2*b^2 + 2*b^4)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^ 
2*Tan[(c + d*x)/2]))/(3*b^4*(a^2 - b^2)^2*d*Sqrt[Sec[(c + d*x)/2]^2]*(a + 
b*Sec[c + d*x])^(5/2)) + ((b + a*Cos[c + d*x])^3*Sec[c + d*x]^3*((-8*a*(4* 
a^4 - 7*a^2*b^2 + 2*b^4)*Sin[c + d*x])/(3*b^4*(-a^2 + b^2)^2) - (2*a^3*Sin 
[c + d*x])/(3*b^2*(-a^2 + b^2)*(b + a*Cos[c + d*x])^2) - (2*(-7*a^5*Sin[c 
+ d*x] + 11*a^3*b^2*Sin[c + d*x]))/(3*b^3*(-a^2 + b^2)^2*(b + a*Cos[c + d* 
x])) + (2*Tan[c + d*x])/(3*b^3)))/(d*(a + b*Sec[c + d*x])^(5/2))
 
3.6.70.3 Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 447, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 4332, 27, 3042, 4578, 27, 3042, 4570, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^5}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4332

\(\displaystyle -\frac {2 \int \frac {\sec ^2(c+d x) \left (4 a^2-3 b \sec (c+d x) a-3 \left (2 a^2-b^2\right ) \sec ^2(c+d x)\right )}{2 (a+b \sec (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sec ^2(c+d x) \left (4 a^2-3 b \sec (c+d x) a-3 \left (2 a^2-b^2\right ) \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (4 a^2-3 b \csc \left (c+d x+\frac {\pi }{2}\right ) a-3 \left (2 a^2-b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4578

\(\displaystyle -\frac {\frac {2 \int \frac {\sec (c+d x) \left (2 b \left (3 a^2-5 b^2\right ) a^2+2 \left (6 a^4-11 b^2 a^2+3 b^4\right ) \sec (c+d x) a-3 b \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \sec ^2(c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\sec (c+d x) \left (2 b \left (3 a^2-5 b^2\right ) a^2+2 \left (6 a^4-11 b^2 a^2+3 b^4\right ) \sec (c+d x) a-3 b \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (2 b \left (3 a^2-5 b^2\right ) a^2+2 \left (6 a^4-11 b^2 a^2+3 b^4\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) a-3 b \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4570

\(\displaystyle -\frac {\frac {\frac {2 \int \frac {3 \sec (c+d x) \left (\left (4 a^4-7 b^2 a^2-b^4\right ) b^2+4 a \left (4 a^4-7 b^2 a^2+2 b^4\right ) \sec (c+d x) b\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\frac {\int \frac {\sec (c+d x) \left (\left (4 a^4-7 b^2 a^2-b^4\right ) b^2+4 a \left (4 a^4-7 b^2 a^2+2 b^4\right ) \sec (c+d x) b\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\left (4 a^4-7 b^2 a^2-b^4\right ) b^2+4 a \left (4 a^4-7 b^2 a^2+2 b^4\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) b\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4493

\(\displaystyle -\frac {\frac {\frac {4 a b \left (4 a^4-7 a^2 b^2+2 b^4\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-b (a-b) \left (16 a^4+12 a^3 b-16 a^2 b^2-9 a b^3-b^4\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {4 a b \left (4 a^4-7 a^2 b^2+2 b^4\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b (a-b) \left (16 a^4+12 a^3 b-16 a^2 b^2-9 a b^3-b^4\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4319

\(\displaystyle -\frac {\frac {\frac {4 a b \left (4 a^4-7 a^2 b^2+2 b^4\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \left (16 a^4+12 a^3 b-16 a^2 b^2-9 a b^3-b^4\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\frac {2 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\frac {-\frac {8 a (a-b) \sqrt {a+b} \left (4 a^4-7 a^2 b^2+2 b^4\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \left (16 a^4+12 a^3 b-16 a^2 b^2-9 a b^3-b^4\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b}-\frac {2 \left (a^2-b^2\right ) \left (2 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {4 a^3 \left (3 a^2-5 b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

input
Int[Sec[c + d*x]^5/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(-2*a^2*Sec[c + d*x]^2*Tan[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x 
])^(3/2)) - ((-4*a^3*(3*a^2 - 5*b^2)*Tan[c + d*x])/(b^2*(a^2 - b^2)*d*Sqrt 
[a + b*Sec[c + d*x]]) + (((-8*a*(a - b)*Sqrt[a + b]*(4*a^4 - 7*a^2*b^2 + 2 
*b^4)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], 
 (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[ 
c + d*x]))/(a - b))])/(b*d) - (2*(a - b)*Sqrt[a + b]*(16*a^4 + 12*a^3*b - 
16*a^2*b^2 - 9*a*b^3 - b^4)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c 
 + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b 
)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d)/b - (2*(a^2 - b^2)*(2*a^2 - 
 b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/d)/(b^2*(a^2 - b^2)))/(3*b*(a 
^2 - b^2))
 

3.6.70.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4332
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-a^2)*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^( 
m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[d^3/ 
(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x]) 
^(n - 3)*Simp[a^2*(n - 3) + a*b*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*( 
m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 
- b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n 
, 2]))
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 

rule 4578
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[ 
(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x 
_Symbol] :> Simp[a*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x 
])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Simp[1/(b^2*(m + 1)*(a^2 - b^ 
2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(m + 1)*((-a)*(b 
*B - a*C) + A*b^2) + (b*B*(a^2 + b^2*(m + 1)) - a*(A*b^2*(m + 2) + C*(a^2 + 
 b^2*(m + 1))))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], 
x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1 
]
 
3.6.70.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(5025\) vs. \(2(393)=786\).

Time = 14.62 (sec) , antiderivative size = 5026, normalized size of antiderivative = 11.77

method result size
default \(\text {Expression too large to display}\) \(5026\)

input
int(sec(d*x+c)^5/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.6.70.5 Fricas [F]

\[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{5}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^5/(b^3*sec(d*x + c)^3 + 3*a 
*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)
 
3.6.70.6 Sympy [F]

\[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\sec ^{5}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)**5/(a+b*sec(d*x+c))**(5/2),x)
 
output
Integral(sec(c + d*x)**5/(a + b*sec(c + d*x))**(5/2), x)
 
3.6.70.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
Timed out
 
3.6.70.8 Giac [F]

\[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{5}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^5/(b*sec(d*x + c) + a)^(5/2), x)
 
3.6.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^5(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^5\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^5*(a + b/cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^5*(a + b/cos(c + d*x))^(5/2)), x)